NAG Toolbox for MATLAB

f02gb

1 Purpose

f02gb computes all the eigenvalues, and optionally all the eigenvectors, of a complex general matrix.

2 Syntax

$$[a, w, v, ifail] = f02gb(job, a, 'n', n)$$

3 Description

f02gb computes all the eigenvalues, and optionally all the right eigenvectors, of a complex general matrix A:

$$Ax_i = \lambda_i x_i, \quad i = 1, 2, \dots, n.$$

4 References

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: job – string

Indicates whether eigenvectors are to be computed.

job = 'N'

Only eigenvalues are computed.

job = 'V'

Eigenvalues and eigenvectors are computed.

Constraint: job = 'N' or 'V'.

2: a(lda,*) - complex array

The first dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The n by n general matrix A.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The dimension of the array n.

n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

lda, ldv, rwork, work, lwork

[NP3663/21] f02gb.1

f02gb NAG Toolbox Manual

5.4 Output Parameters

1: a(lda,*) - complex array

The first dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

If job = 'V', a contains the Schur form of the balanced input matrix A' (see Section 8).

If job = 'N', the contents of a are overwritten.

2: $\mathbf{w}(*)$ - complex array

Note: the dimension of the array w must be at least $max(1, \mathbf{n})$.

The computed eigenvalues.

3: v(ldv,*) – complex array

The first dimension, ldv, of the array v must satisfy

if
$$job = 'N'$$
, $ldv \ge 1$;
if $job = 'V'$, $ldv \ge max(1, n)$.

The second dimension of the array must be at least $max(1, \mathbf{n})$ if $\mathbf{job} = 'V'$, and at least 1 otherwise

If $\mathbf{job} = 'V'$, \mathbf{v} contains the eigenvectors, with the *i*th column holding the eigenvector associated with the eigenvalue λ_i (stored in $\mathbf{w}(i)$).

If job = 'N', v is not referenced.

4: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

```
On entry, \mathbf{job} \neq 'N' or 'V',

or \mathbf{n} < 0,

or \mathbf{lda} < \max(1, \mathbf{n}),

or \mathbf{ldv} < 1, or \mathbf{ldv} < \mathbf{n} and \mathbf{job} = 'V',

or \mathbf{lwork} < \max(1, 2 \times \mathbf{n}).
```

ifail = 2

The QR algorithm failed to compute all the eigenvalues.

7 Accuracy

If λ_i is an exact eigenvalue, and $\tilde{\lambda}_i$ is the corresponding computed value, then

$$\left|\tilde{\lambda}_i - \lambda_i\right| \le \frac{c(n)\epsilon \|A'\|_2}{s_i},$$

where c(n) is a modestly increasing function of n, ϵ is the **machine precision**, and s_i is the reciprocal condition number of λ_i ; A' is the balanced form of the original matrix A (see Section 8), and $||A'|| \leq ||A||$.

If x_i is the corresponding exact eigenvector, and \tilde{x}_i is the corresponding computed eigenvector, then the angle $\theta(\tilde{x}_i, x_i)$ between them is bounded as follows:

f02gb.2 [NP3663/21]

$$\theta(\tilde{x}_i, x_i) \le \frac{c(n)\epsilon ||A'||_2}{sep_i},$$

where sep_i is the reciprocal condition number of x_i .

The condition numbers s_i and sep_i may be computed by calling f08qy, using the Schur form of the balanced matrix A' which is returned in the array **a** when $\mathbf{job} = 'V'$.

8 Further Comments

f02gb calls functions from LAPACK in Chapter F08. It first balances the matrix, using a diagonal similarity transformation to reduce its norm; and then reduces the balanced matrix A' to upper Hessenberg form H, using a unitary similarity transformation: $A' = QHQ^H$. If only eigenvalues are required, the function uses the Hessenberg QR algorithm to compute the eigenvalues. If the eigenvectors are required, the function first forms the unitary matrix Q that was used in the reduction to Hessenberg form; it then uses the Hessenberg QR algorithm to compute the Schur factorization of A' as $A' = ZTZ^H$. It computes the right eigenvectors of T by backward substitution, pre-multiplies them by T to form the eigenvectors of T and finally transforms the eigenvectors to those of the original matrix T.

Each eigenvector x is normalized so that $||x||_2 = 1$, and the element of largest absolute value is real and positive.

The time taken by the function is approximately proportional to n^3 .

9 Example

```
job = 'Vectors';
a = [complex(-3.97,
                    -5.04), complex(-4.11, +3.7), complex(-0.34, +1.01),
complex(1.29, -0.86);
       complex(0.34,
                     -1.5), complex(1.52, -0.43), complex(1.88, -5.38),
complex(3.36, +0.65);
       complex(3.31, -3.85), complex(2.5, +3.45), complex(0.88, -1.08),
complex(0.64, -1.48);
      complex(-1.1, +0.82), complex(1.81, -1.59), complex(3.25, +1.33),
complex(1.57, -3.44)];
[aOut, w, v, ifail] = f02gb(job, a)
aOut =
   -6.0004 - 6.9998i -0.3656 + 0.3637i
                                             0.4761 - 0.1946i
                                                                 -0.7237 +
0.5589i
         \cap
                         -5.0000 + 2.0060i
                                              0.4981 - 0.5232i -0.1637 +
0.2071i
                              0
                                              7.9982 - 0.9964i
                                                                  0.8487 -
0.6651i
                              0
                                                   0
                                                                   3.0023 -
3.9998i
  -6.0004 - 6.9998i
  -5.0000 + 2.0060i
   7.9982 - 0.9964i
   3.0023 - 3.9998i
                         -0.3865 + 0.1732i -0.1730 + 0.2669i -0.0356 -
   0.8457
0.1782i
  -0.0177 + 0.3036i -0.3539 + 0.4529i
                                                                   0.1264 +
                                            0.6924
0.2666i
                                              0.3324 + 0.4960i
                                                                   0.0129 -
   0.0875 + 0.3115i
                        0.6124
0.2966i
 -0.0561 - 0.2906i -0.0859 - 0.3284i 0.2504 - 0.0147i 0.8898
ifail =
           0
```

[NP3663/21] f02gb.3

f02gb NAG Toolbox Manual

f02gb.4 (last) [NP3663/21]